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Abstract--The hydrodynamic interaction between a droplet immersed in Couette flow and the containing 
walls is studied. The analysis is based on the assumptions that the disturbance flow induced by the droplet 
is without inertia, that the droplet maintains its nearly spherical shape and that the radius of the droplet 
is small compared with the distance between the walls, Based on Lorentz's reflection method, a first-order 
simple analytical solution is derived for the case of a droplet in close vicinity to one wall. An integral 
solution is given for the general configuration of a droplet interacting with two wails. First-order 
corrections for wall effects are obtained for the drag force and the droplet's deviation from sphericity. 
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1. I N T R O D U C T I O N  

The analysis of low Reynolds number flow around a single droplet moving between two infinite 
parallel flat plates is of fundamental importance in the field of lubrication. Lubricants are rarely 
free of contaminants and even a small amount of immersed bubbles would alter the performance 
of journal bearings and squeeze film dampers (see White 1970; Marsh 1974; Hibner & Bansal 1979; 
Parkins & Stanley 1982; Haber & Etsion 1985; Haber et al. 1987). In a typical journal bearing, 
the gap between the walls is very small, and interaction between the bubbles and the walls must 
be accounted for to avoid erroneous hydrodynamic predictions. The hydrodynamic interaction 
between adjacent bubbles seems, however, less significant and can be neglected. 

The shape of immersed bubbles or droplets is not known a priori and is determined by the 
non-dimensional capillary number (#Ga/tr) where G is the local shear rate, # is the viscosity of the 
lubricant, a is a characteristic dimension of the bubbles and a is the surface tension. For small 
bubbles or weak shear rates, for which #Ga/a < 1, the bubbles retain their nearly spherical shape 
(Taylor 1934; Bartok & Mason 1959; Chaffey & Brenner 1967; Cox 1969; Chan & Leal 1979). 
However, if #Ga/a is large the bubbles assume a needlelike shape or shatter to form smaller bubbles 
(Rumscheidt & Mason 1961a,b; Frankel & Acrivos 1970; Torza et al. 1972; Barthes-Biesel 1973; 
Acrivos & Lo 1978; Hinch & Acrivos 1980; Grace 1982). For small bubbles or droplets, a first-order 
approximation can be obtained if we assume that the bubbles are exactly spherical. This assumption 
makes it impossible to satisfy all the boundary conditions over the interface and, as shown by 
Hetsroni & Haber (1970), the condition for the normal component of the stress vector has to be 
abandoned. This condition, however, may in turn provide us with an estimate for the deviation 
of the droplet from sphericity. 

The solution for the flow fields interior and exterior to a small spherical droplet moving in 
Couette flow can be viewed as a superposition of two simpler flow cases. The first case (1) is the 
flow field generated by a single droplet moving parallel to two infinite flat plates in a quiescent fluid. 
The second case (2) is the flow disturbance generated by an immobile droplet suspended in Couette 
flow. The second case can in turn be viewed as composed of two flow fields: (2a) a droplet 
suspended in a uniform field of magnitude G/h, where h is the distance of the center of the droplet 
from the immobile wall; and (2b) a droplet suspended in a "pure" shear field of zero velocity at 
the point occupied by the center of the droplet. 
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Case 2a is identical, from the mathematical point of view, to case 1. Consequently, the general 
problem of  a droplet or bubble moving in Couette flow can be divided into two subproblems: the 
aforementioned cases 1 and 2b. The first case was analyzed in a previous paper (Shapira & Haber 
1988). Analysis of case 2b is the goal of the present work. 

The paper is divided into three main parts. In the first part (section 4), we briefly present the 
results for a droplet suspended in pure shear flow close to a single flat wall. This case is associated 
with the geometrical configuration of a small bubble (a/h < 1) suspended close to one wall 
(h /H ~ 1/2), where H is the gap between the walls. In the second part (section 5), we consider the 
geometrical configuration of a bubble suspended between two walls, namely, h /H  ~ 1/2 and 
compare it with the results obtained by Chan & Leal (1979). In the third part (section 6), a 
comparison between the two configurations is made so that one can deduce the values of h /H for 
which a single wall effect analysis is sufficient. 

2. STATEMENT OF THE PROBLEM 

A small spherical droplet of radius a is suspended between two flat parallel walls, a distance H 
apart. The center of the droplet is at a distance h from one of the walls (denoted henceforth as 
wall 1). The flow field far from the droplet is v~ = G(z - h)i, where G is the shear rate, (x, y, z) 
form a cartesian coordinate system which is located at the projection point of the droplet center 
onto wall 1 and (i, ], k) is the associated orthonormal set of unit vectors. 

The fluids interior and exterior to the droplet are homogeneous, isothermal, Newtonian and of 
constant density, and the Reynolds number Ga2/v is sufficiently small for Stokesian flow to be 
assumed. 

For the continuous phase, the field equations are 

V2u=_I Vp, V'u=O. [1] 
# 

Similarly, for the dispersed phase, we have 

V~u, = I Vp', V .  u' = 0; [2] 

where u and p stand for the velocity and pressure fields, respectively, and # is the viscosity. The 
primed symbols refer to variables inside the droplet. 

The no slip boundary conditions over the walls are 

u = - G h i  @ z = O,H [3] 

and over the surface of the droplet 6S it implies that 

u = u' @ 6s .  [4] 

No mass transfer through the interface results in 

u .  i, = 0 @ 6s ,  [5] 

where in is a unit vector normal to 6S. 
The condition of continuous shear stress and the jump condition for the normal component of 

the stress vector ~ -- n .  i, (due to surface tension) can be written as 

, 1 

where ~ is the stress tensor, a is the surface tension and R, and R2 are the principal radii of the 
surface. 

Only the two tangential components of [6] would be utilized to determine the velocity fields for 
a slightly deformed droplet. The normal component would be used to estimate the deviation of 
the droplet shape from sphericity (see Hetsroni & Haber 1970). 
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3. THE GENERAL METHOD OF SOLUTION 

The solution is based on the method of reflection that is described by Happel & Brenner 
(1965) and modified by Shapira & Haber (1988) to enhance numerical convergence. According 
to the traditional reflection method, boundary conditions at the wall and at the droplet inter- 
face are satisfied alternately. An odd numbered reflection rectifies the error over the droplet 
interface that is induced by the previous even numbered reflection (assuming no walls exist in 
the space occupied by the fluid). An even numbered reflection rectifies the error at the wall that 
was induced by a previous odd reflection (assuming no droplet exists in the space occupied by the 
fluid). 

According to the modified reflection scheme, an odd reflection employs a set of boundary 
conditions which includes those over the droplet interface and the two tangential velocity 
components over the wall. An even reflection rectifies the error in the boundary condition over the 
wall associated with the normal velocity component only. 

A major advantage of the modified scheme can be explained as follows. The disturbance induced 
by a droplet moving in an unbounded field dies out like 1/r for large distances r from the droplet. 
However, if one examines the asymptotic behavior of the velocity components far downstream (or 
upstream) and at a finite small radial distance from the motion axis, one reveals that the velocity 
components parallel to this axis die out like 1/r, whereas the velocity components perpendicular 
to it die out like 1/r 2. Consequently, satisfying simultaneously the boundary conditions for the 
tangential velocity components over the wall and the boundary conditions over the droplet 
interface eliminates a very slow converging mode from the reflection procedure, whereas the faster 
converging mode, the one associated with the normal velocity component at the wall, is taken care 
of by successive reflections. It is therefore believed that this modified scheme causes the numerical 
integration to converge more rapidly than the simple method. In essence, three reflections would 
be sufficient to capture the main characteristics of the flow field. However, if the main interest lies 
in obtaining the drag force exerted on the droplet, the generalized Faxen law for droplets (Hetsroni 
& Haber 1970) can be applied and two reflections would suffice to derive a third reflection order 
of accuracy. Thus, the velocity and pressure fields external to the droplet can be expressed as the 
sum of three fields: 

u = v ~ + v + t o ;  p = p o ~ + q + s ,  [7] 

where v~ = G (z - h)i is the undisturbed velocity field, v and to are the first and second velocity 
reflections, respectively, and q and s are the respective pressure fields. 

All three fields satisfy the field equation [1] separately. The solution domain of the first reflection 
v is the space bounded by the walls and the droplet interface, whereas the solution domain of the 
second reflection to is bounded by the walls only. 

The boundary conditions satisfied by the first reflection v are: (a) the boundary conditions over 
the droplet interface [4]-[6] (u must be replaced by v + v~ and the stress tensor n. is based on v + v~); 
(b) the no slip boundary conditions at the wall for the tangential components, 

v . i = v . j = 0  @z =0,  H; [8,9] 

and (c) the disturbance dies out at infinity, 

v--.0 @x, y, z--.oo. [10] 

(Tacitly we assumed that for the v. k component the wall does not exist and [9] is required for the 
entire domain external to the droplet.) The boundary conditions satisfied by the second reflection 
nullify the velocity component normal to the walls which was induced by v, namely: 

to = - v  @ z  = 0 ,  H. [11] 

It can easily be verified that the velocity sum [7] satisfies exactly the boundary conditions over the 
walls, whereas the boundary conditions over the droplet interface are only approximately satisfied 
due to the small velocity induced by to. 
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4. DROPLET CLOSE TO A SINGLE WALL 

4.1. The flow fieM 

We briefly present the solution for a droplet placed in close vicinity to a single wall so that 
h/H ,~ 1. Chaffey et al. (1965); Chaffey & Brenner (1967), who addressed a similar problem, 
investigated the effect of a droplet settling perpendicular to the streamlines due to droplet 
deformation. We, however, investigate the wall effects on the settling velocity parallel to the 
streamlines and on droplet deformation. 

The semi-infinite domain of the first reflection can be replaced by an equivalent infinite domain 
which contains two droplets, the second droplet being a mirror image of the original droplet. 

The first reflection v constitutes the disturbance introduced by the droplets. It can be described 
as a superposition of the flow v~ and v2: 

v = vl + v2, [12] 

where 

- h ) x : - l ) .  ( z  - h ) x y  v , = { - A ( Z - h ) x 2  B[  ( z - h )  5 (z r~ r~ r~ r~ .J~, + [ - A  b 5B (z %h)xy-]j 

B x - h ) : x ] l  k 
r-~ [ ~  5 (z r~ J J  

+ h)x2]~ i + F (z + h)xy + h)xyT. 
5 (= jj L -  A r~ F 5B (z ~ J l  

[13] 

and 

and A and B are constants, 

r: = [(z + h) 2 + x 2 + y:]l/:, [15b] 

A =/~ + 2.5#' Ga 3 [16] 
# + p '  

and 

B = - -  GaL [17] 
2(# + #') 

The pressure fields generated by a droplet at z = h and a second droplet at z = - h  are, 
respectively, 

( z  - h ) x  
ql = --2pA r~ [18] 

(z + h )x 
q2 = - 2 g A  r~ [19] 

and 

is the flow disturbance generated by the second droplet located at z = - h  and suspended in an 
unbounded shear flow v® = G(z + h)i. Here r~ and r: are the radial from the center of  the first and 
the second droplet, respectively, 

rt = [(z - h) 2 + x ~ + y2]1/2 [15a] 

[14] + f -  A (z + h)2x B x + h)2x]  k 

is the flow disturbance generated by the first droplet located at z = h and suspended in an 
unbounded shear flow vo~ = G(z - h ) i  and 

v2 = { _  A (Z + h )x2 [ r~ B (z r~ + h) 
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Their total 

q = ql + q2 [20] 

forms the contribution to the pressure field of the first reflection. It is deafly indicated that over 
the wall (z = 0), we have that rl -- r2 and q is zero as expected. 

The disturbance field of the second reflection to stems from the non-zero velocity component 
normal to the wall that is generated by the first reflection. 

2Ah2x 
v:= v. k = (vl + v2) 'k  = (h 2 +p2)Sn @ z = 0, [21] 

where 

p2 = x 2 + yZ. [22] 

Thus a flow field to is sought in the semi-infinite domain z > 0, for which 

2Ah2x 
to • k = (h 2 + p 2)5/2 

t o . i  0 f @ z = 0 .  [23a--c] 

to i 0 

Utilizing a two-dimensional Fourier integral transform and Lipshitz equality (see appendix A), 
one obtains an extremely simple analytical solution for to, namely, 

2Ah {iz(h + z)(5x 2 - r~) + j .  5z(h + z)xy  + kx[hr~ + 5z(h + z)21}, [14] t o =  r~- 

where r 2 is given by [14]. The associated pressure field is 

4Ah#x [5(h + z) 2 - r~], [25] 
S ~  r - - ~  

which is antisymmetric with respect to the x = 0 plane and symmetric with respect to the y = 0 
plane, as expected. 

4.2. The drag force 

The third reflection would correct the boundary conditions over the droplet interface (violating 
the boundary conditions over the wall only slightly). The correction to be made stems from the 
disturbance generated by the image droplet and the velocity induced by the second reflection. The 
exact velocity distribution is of no particular interest, since the resultant drag force and the change 
in the droplet shape can be obtained using the generalized Faxen law (Hetsroni & Haber 1970): 

2 t ~t 
F D = 6n#a ~ [V~],= 0 + rca 3 - -  [VZV~],_0, [26] 

p - e # '  / ~ + # '  - 

where in our case [V~], the undisturbed velocity field, is 

V~ = v~ + v2 + to [27] 

and the location r = 0 in [26] refers to the origin of the droplet, namely, x = y = 0 and z = h. 
The second term in [26] is of a higher order than (a/h) 2 and therefore would be neglected. 

Introducing [24] into [26], we obtain 

( h )  ( a )  4 FD= --i½nl.tGa 2 ( 3 # ' + 1 ~ ) ( ~ ' + 1 ~ )  2 + 0  [28] 
(~, + ~)2 ~ , 

where the contribution of v~ is identically zero and that of v2 was found to be of order (a/h) 4. 
The total wall effect on the drag force is provided by [28] since for a droplet submerged in an 

unbounded shear flow the net drag force is zero. Equation [28] also proves that the only 
non-vanishing force component (for a spherical droplet) is parallel to the wall so that no droplet 
migration perpendicular to the wall is expected (as long as the droplet remains spherical). The 
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negative sign in [28] proves that a small droplet would lag behind the undisturbed Couette flow 
if located close to the immobile wall. This is in agreement with the known wall effect for a particle 
moving close to the wall inside Poiseuille flow (Happel & Brenner 1965). 

The net perpendicular force exerted on the wall is zero since the net contribution of q~ + q2 over 
the wall vanishes and s is antisymmetric with respect to the x = 0 plane. Integration of the pressure 
field over the conduit walls reveals that no net torque is exerted on the walls due to the presence 
of the droplet It stems from the sign change that the pressure field [25] undergoes across the circle 
X 2 ..]_ y 2  = 4h 2. 

4.3. Droplet deformation 
If r, O, ~o is a spherical coordinate system located at the droplet origin, the deformed shape of 

the droplet can be expressed by 

r = a[1 + 6(0, tp)], [29] 

where a first-order term can be derived from the following relation: 

#a 16# + 1 9 # ' p V r ~ ]  
6(O, tp) 

= ~ -  8(# + # ' )  L Or J,=0" [30] 

following Hetsroni & Haber (1970) and Shapira & Haber (1988). Here Vro~ is the radial component 
of V~ given in [27]. The first term in [27], v~ (no wall effects), contributes to the deformation 
observed by Taylor (1934): 

#Ga 16# + 19#' 
6T = sin 0 cos 0 cos ~b, [31] 

8(# + #') 

where 0 is the latitude angle measured from the z axis and ~b is the azimuthal angle measured from 
the x axis. Substituting the last two terms of [27] into [30], we obtain 

3 ( a y  #Ga 16# + 19#' # +2 .5# '  
6w=8\h,] ' a 8 ( # + # ' )  # + # '  s in0cos0cos~b,  [32] 

which is solely due to wall effects, and the total deformation is 

6 = fit + 6w. [33] 

Thus, a droplet in close vicinity to the wall has a larger deformation but no change in shape, an 
ellipsoid tilted along the flow direction and inclined 45 ° from the wall. 

5. A DROPLET BETWEEN TWO P A R A L L E L  WALLS 

The problem addressed in section 2 dealt with the case of a droplet close to a single wall so that 
h/H <~ I. However, if the latter condition is not satisfied, the effect of both walls must be accounted 
for. 

The method of solution for a droplet interacting with two walls is somewhat similar to the 
previous problem. For the first reflection, we would try again to satisfy the boundary conditions 
pertaining to the tangential velocity components over the walls and over the droplet interface. The 
second reflection would rectify the solution so that the velocity component perpendicular to the 
walls would vanish. Finally, the third reflection contribution would be accounted for insofar as the 
drag force and the deformation of the droplet are concerned. 

5.1. The solution 
An exact solution, for which we satisfy simultaneously the boundary conditions for the tangential 

velocity components over the wall and over the droplet interface, is formidable. Indeed, it is 
redundant, since the solution scheme is carried out up until the second reflection which, in turn, 
satisfies only approximately the boundary conditions over the droplet interface. Hence, an 
approximate first reflection, consistent with the order of accuracy of the second reflection is 
sufficient. Here we utilize again the previous technique to extend the flow domain to infinity. This 
time an infinite number of mirror images of the droplet and the non-disturbed velocity field are 
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required so that the tangential velocity components vanish simultaneously over both walls (see 
Shapira & Haber 1988). An approximate flow field for the disturbance velocity due to this periodic 
configuration is the sum 

v = v , + v 2 =  ~ { ~ + ~ } ,  [34] 
rn~ --oo 

where ~ and ~ possess the form of [12] and [13], respectively; only h must be replaced by h + 2mH, 
the z location of the image droplets. It is easy to show by direct substitution that at z = 0 and z = H 
the tangential components vanish. The boundary conditions over the droplet interface are only 
approximately satisfied and the error induced by the image droplets and the second reflection could 
be corrected by a third reflection velocity field• The non-vanishing velocity component perpendic- 
ular to the wall at z = 0 is 

v~= -2Ax ~ (h + 2mH)2 5 @ z = O, [35] 
m~ --oo rm 

where 

and at z = H, we have 

where 

2 (h + 2mH 2) + x 2 + y2; r m ~ -  [36] 

[h + (2m + 1)H] 2 
t) z - 2 A  x [37] 

~._~ R~ ' 

R~ = [h + (2m + 1)H] 2 + x 2 + y2. [38] 

Here again we neglected the terms perceded by the B coefficient which are of higher order in 
a/h. Similar to the previous problem, the pressure field induced by v over the walls is identically 
zero. 

To nullify the velocity components normal to the walls, the second reflection must satisfy the 
following boundary conditions: 

~ = 2Ax (h + 2mH) 2 
@ z = 0, [39a] 

m l  --oo r 5  

[h + (2m + 1)H] 2 
o )  z 2Ax . . . .  2" R~ @ z = H [39b] 

and 

cox = COy = 0 @ z = 0, H. [39c] 

The general solution in cartesian coordinates is again utilized (see appendix A). This time, 
however, we must keep the full expression [A.4]. Equations [39a--c] suggest that the following 
modified form of [A.4] would result in simpler algebraic equations for the unknown coefficients, 
namely, for the transformed velocity components we use the expressions, 

I /21 1 [ i2t 1 o3x = /~ - 7 (z - H)/3 cosh 2z + P - 7 (z - H)C~ sinh 2z, [40a] 

• i22 H)C'lsinh 2z o3 =[,_i_~ (z-H)D3cosh2z +[J - - -~ ( z -  j [4Ob] 

and 

o3: = [• + (z - H)C~lcosh 2z + [/~ + (z - H)/~lsinh 2z, 

and for the transformed pressure we use 

g = 2(~ cosh 2z +/~ sinh 2z), 

[40c] 

[41] 
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where 2 to .7 are eight, as yet unknown, coefficients (functions of :., and '~2 in general). To satisfy 
the continuity equation it is required that 

= i(2, E + 22/") - 2/~ [42a] 

and 

B = i(2~ff + 22.7) - 2.4, [42b] 

limiting the number of unknown independent coefficients to six, the exact number of scalar 
boundary conditions over the walls. Introducing [39c] into [40a--c], we obtain the following 
relations for C to .I in terms of .4 and B: 

,~2fl 2B, D =  ,L4 ifl~.4 [43] 
= (1 + / / c o t h  fl) (1 + / / c o t h  fl)' j~ -- (1 + / / c o t h  fl)' 

? = i//, coth//.*1 .7 = i//2A and J = i//2 coth//.*1 
(1 + / / c o t h / / ) '  (1 + / / c o t h / / )  (1 + / / c o t h / / ) '  

where fl,//, and//2 are the following dimensionless parameters: 

fl = 2H, //l = ~'l H ,  //2 = ~2 H"  [44] 

Utilizing the identities (see appendix B) 

~ 2Ax(h+2mH) 2 A f f  ~ ~ l ' co sh2 (H-h ) '~  . . . .  
5 =-3- -7  i2, ~ s-]-m-hnh'-2-ff ~expt-zta, x+22y)]dxdy [45a1 

m =  _ o :  r m  - , c  

and 

2Ax[h+(2m+l)H]2 A f f  ~ ~ 2 ( c ° s h 2 h )  • . . . .  R~ = - 3---~ _~ i2~ ~ exp[-t(2~ x + 22y)] dx dy [45b] 

and [39a, b] make it possible to derive 2 a n d / t  in terms of k and t: 

.4 (k sinh fl - / / / ) ( s i n h / / + / / c o s h / / )  
- a = [46] iA//i sinh2fl _ / /2  

3rt 

and 

where 

and 

iA//, 
3~ 

- -  =- G = tfl2 s i n h / / -  (k c o s h / / -  t ) ( s i n h / / + / / c o s h / / )  
s inh2//_//2 , [47] 

(cosh(1 - ~)//~, 
 fi-e- / 

(cosh    
' = \ / 

[48a]  

[48b] 

walls 

2A e2f  { 
cox = 3 H 2 ~-2 ~0 flJ0(/~//) '(1 + fl coth fl) [ - ~  cosh (£fl) + coth fl sinh (~fl) 

fl(1 - £)sinh(£fl)] + ~'(1 - £)sinh :~fl~ dfl + 
J 

[50] 

h 
= ~ .  [49] 

Introducing [43] and [44] into [40] and utilizing the fact that the two-dimensional Fourier transform 
is equal to the zero-order Hankel transform, we obtain for the velocity components parallel to the 
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and 

2 A  02 I o  
COY = 3 / - r  02 0p /~J0(t~#){ } dfl, [511 

where the expressions in curly brackets in [51] and [50] are identical and 
x y z p (x 2 + y2)1/2 

2 = ~ ,  p = ~ ,  ~ = ~  and k = ~ =  H 

are dimensionless coordinates. 
The velocity component perpendicular to the wall is 

flJo(Pfl) [cosh(~fl)(1 + fl coth fl) + f12(l - $)cosh ~fl o9:= 3 H 202 o l + fl coth fl 

+ fl(l - ~)sinh Eft] +/~[sinh ~fl +/~(1 - £)cosh $/~]t d/~. [521 

If numerical integration of [50]-[52] is desired, one can differentiate with respect to )? and ~ prior 
to integrating the equation, since the only term in the integrands depending on ff and .~ is the 
zero-order Bessel function J0(t3fl). 

The pressure disturbance s due to the velocity field oJ is obtained using [41], [43] and [44]: 

s =~-~H---50---fc flJo(Pfl) (1 + f l c o t h f l )  ~- cosh(~fl)-~ 1 + f l c o t h f l  

4A 2 f0° { a(f l2c°sh~fl+flsinh~fl)  t-/7, cosh :~fl) dfl [53] 
- 3 H 3 ~  fl2Jl(Pfl) (1 + fl coth fl) 

5.2. The drag force 
The contribution to the drag force of reflections lower than three is identically zero. Keeping 

terms of order (a/H) 2 only, the contribution of the third reflection can be derived by using the 
generalized Faxen law, namely [50]-[52] are introduced into [26] and evaluated at x = y = 0 and 
z = h. One can easily show that only the first term of [26] contributes to the desired accuracy and 
that no net drag force exists in the y and the z directions. In other words, no lift or side forces 
are exerted on the droplet. However, in the x direction, the direction of the undisturbed shear flow, 
we obtain that 

FD = 4rc~Ga2 (t~ + ~#')(~ + ~#') ( a ) 2 • (/~ +/~,)2 ~ C~, [54a] 

where the drag force coefficient is 

1 f0 ~ sinh2flfl3 Co = _ f12{(1 - ar)sinh ~fl(t sinh fl - kfl) + fl sinh(1 - ~)fl(tfl - k sinh fl)} dfl [54b] 

where k and t are given in [48a,b]. 
Convergence of [54b] is assured since the integrand of [54b] tends to zero for fl--*0 as 

3no(1 -no)(1 -2nc)fl and for large fl and/~ < ½ it decays exponentially as -r~2f13 exp(-2~fl) .  For 
a c = ½, CD is exactly zero, as required by symmetry, and for a c and 1 - /~  the results are equal in 
magnitude and opposite in sign. Figure 1 depicts Co as a function of/~ = h/H for droplets not too 
close to the walls. It manifests obviously that wall effects become more significant as the droplet 
moves closer to the wall. The asymptotic behavior of Ca for small values of ~ is (see appendix C), 

lim Co" n c2 = -~,  [55] 
E-0 

which coincides with the result given in [28]. Consequently, for the above case the drag force 
coefficient grows at a faster rate than that of  a particle moving in quiescent fluid in which Co grows 
like l/n c. The contribution [54a,b] to the drag force is wholly due to wall effects, since for an 
unbounded shear flow the drag force is identically zero. 
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Figure 1. Drag force coefficient [54b] vs droplet position. 

5.3. Droplet deformation 

Following the analysis of  section 2.5, the total deformation of  a droplet is due to two 
contributions: the unbounded contribution [31] due to Taylor and the wall effect due to v and to. 
Only that part of v which is induced by the mirror images of  the droplet must be considered. 
Thereby, the contribution of  v ° in [34], which represents the flow induced by the original droplet, 
must not be accounted for. The radial velocity component of  v~ [cf. 34] we use in [30] is 

1 ~ Ax 
131r=~ [XVlx+yVly+(Z - h ) l ) l z  ] = - )_~ r - -~[g - ( h  + 2 m r ) ]  

m¢0 
x {x2 + y2 + ( z - h ) [ z - ( h  + 2mH)]}. [56] 

Equation [56] can be rewritten using a spherical coordinate system 

Ar sin 0 
vlr = - -------3-- cos q~(r cos 0 - 2mH)[r sin 2 0 + cos O(r cos 0 - 2mr)] ,  [57] 

m ~  --c~ r m  

mOO 

where (r, 0, •) is a spherical coordinate system located at the center of  the droplet. Thus, 

Or ,=0= 4 / t s s i n 0 c ° s 0 c ° s 4 ~  ~t " [58] 

Similarly, the contribution of  v2 is 

(~V2r A sin 0 cos 0 cos $ 1 1 
Or r = 0 = - -  8 H 3  0 (m + ~)3 F ,, =~ (m - / ; )3  " [59] 

The radial velocity component of eJ is 

1 
O~r = - [xogx + y~% + (z - h)co~]. [60] 

r 

Introducing [50]-[52] into [60], we obtain 

x c o t h B [ - ~  cosh ~B + c o t h ~  sinh B~ +~(1  - $ ) s i n h ~ ]  +6(1  - $ ) s i n h ~  dE 

COSsin 00 .]0f°~ /~2j, (P/~)(~" 1 +/~acoth /~ tcosh/~£(1 +/~ coth/~) +/~(1  - £)sinh/~£] 

+ b[sinh/~£ + / ~ ( 1 -  £)cosh/~:~]t d/~), [61] 

where differentiations appearing in [50]-[52] were carried out. Hence, 

= ~ sm 0 cos q~ sin 0 + cos 0 , [62] 
dr ,=0 3 - ~-0..,-J; 
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where the parentheses in [62] stand for the expression in parentheses in [61]. After some tedious 
arithmetic manipulations, we get 

d~r 2 A .  f f o ~  4 = ~3 sm 0 cos 0 cos ~b f12 [/~(k sinh fl - flt)cosh(1 -/~)fl 
dr r=0 3 sinh2fl- 

+ (1 - /~)(t  sinh fl - kfl)cosh/~fl] dflt. [63] 

It is readily verified that [63] is symmetric with respect to h = 1 as expected. The integrand of 
[63] tends to 2fl[3nc(1 - n c) + 1] as fl--+0 and to fl4~2 exp(-  2/~fl) as fl--+~ and n c ~< ½. Consequently, 
[63] converges and can easily be evaluated. 

The total deformation of the droplet due to wall effects is obtained by summing the contributions 
of [58], [59] and [63] and introducing the total into [30]. Hence, 

~w=/~aG(H)3/~+2.5  #' 16/~+19#' a /~ +/~' 8(/z +/~') "sin 0 cos 0 cos ~bCs, t [64] 

where the shape factor Cs is 

l ~  1 1 ~  1 1 ~  1 2fo~ ~'  
Cs = - - 4 m = ]  m 3 8 m=0 (m "~ /~)3 8 m = l  (m /~)~ + 3 sinh~--/~2 

x [/~(k sinh fl - flt)cosh(1 -/~)fl + (1 - /~)(t  sinh fl - kfl)cosh ac/~] dfl [65] 

and k and t are defined in [48a,b]. To obtain the total deformation, one has to add the Taylor 
deformation [31] to [65]. Equation [65] manifests that wall effects have not altered the shape of the 
deformed droplet, as predicted by Taylor. It has merely changed the magnitude of the deformation. 
For small ratios of a/h, [65] can be neglected altogether compared with [31]. However, as depicted 
in figure 2, if the droplet is close to the walls (nC~0 or / ~ 1 ) ,  the shape coefficient Cs grows 
considerably. Notwithstanding, for droplets too close to the walls a three-reflection analysis might 
not be sufficient to describe the total hydrodynamic effect. 

The asymptotic behavior of Cs for small n c values is evaluated along the lines by which [55] was 
obtained (see appendix C). Hence, in the vicinity of the flat wall, we have 

lim Cs"/~3 = 3, [66] 
h~0 

which coincides with the result given by [32]. Chan & Leal (1979), who addressed a similar problem 
for a non-Newtonian fluid, obtained numerical values for Cs at three droplet locations n c = 0.2, 0.3, 
0.5, which exactly coincide with the results we present in table 2 (up to the first three significant 
digits). 

6. C O N C L U S I O N S  

The velocity and pressure fields around a droplet were calculated employing a reflection method. 
The method provided first-order approximations in a/h for the single-wall effect case and in a/H 
for the two-wall effect case. The drag force was affected by the walls via a term of order (a/h) 2 
or (a/H) 2, respectively. The antisymmetric property of the drag coefficient proves that, for Couette 

120 

2O 

0 
0.15 0.25 O~S 0.45 0.55 0.65 0.75 O~ 

h/Fl 

Figure 2. Shape factor [64] vs droplet position. 
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flows, a droplet located close to the wall at rest would lag behind the undisturbed velocity field, 
whereas a droplet located closed to the moving wall would move faster than the undisturbed 
velocity. A droplet located at the mid distance between the plates would move at a rate equal to 
the undisturbed velocity. (All aforementioned statements pertain to a location in the undisturbed 
field which coincides with the geometrical center of the droplet.) No transverse motion is observed 
for a spherical droplet although due to its deformation, a secondary transverse migration will occur. 
(Chaffey & Brenner 1967; Chaffey et al. 1965). 

For the single- and two-wall effect cases a new mathematical method was applied in which 
integrations over a two-dimensional domain were replaced by integrations over a one-dimensional 
domain. It yielded explicit and rapidly converging expressions for the drag force and the 
deformation of the droplet. This simplicity made it possible to calculate and draw the numerical 
results over the whole domain of valid droplet locations. Ho & Leal (1974), who addressed a similar 
problem for rigid spheres, provide numerical values for four particle locations. Their results are 
obtained as a particular case for which lL'---,oo (see table 1). Chan & Leal (1979), who addressed 
a similar problem for a non-Newtonian fluid, applied a different scheme of analysis which resulted 
in long two-dimensional integrals cited to exist in Chan's thesis. They provided numerical values 
for the shape factor at three droplet locations and for a /H  = 0.1 and #'  = 0, which coincide with 
our results exactly (see table 2). Their solution does not provide an explicit expression for the shape 
factor and drag coefficient dependence on p'/p. It is, however, implicitly given in their very complex 
integrals 12 and 15 . 

Table 1. The drag force factor 

Two wails, a Single wall, Ho & Leal (1974) 
h / H  C o C D = - 1/8(H/h)2 (# '--, oo) 

0.150 - 0 . 5 3 4 4 0 2 6 2 D +  01 - 0 . 5 5 5 5 5 5 5 6 D +  01 
0.175 - 0 . 3 8 5 2 1 9 0 4 D +  01 - 0 . 4 0 8 1 6 3 2 7 D +  01 
0.200 - 0 . 2 8 7 9 6 2 2 8 D +  01 - 0 . 3 1 2 5 0 0 0 0 D +  01 
0.225 - 0 . 2 2 0 9 0 9 4 6 D +  01 - 0 . 2 4 6 9 1 3 5 8 D +  01 
0.250 - 0 . 1 7 2 5 9 4 9 4 D + 0 1  - 0 . 2 0 0 0 0 0 0 0 D +  01 
0.275 - 0 . 1 3 6 4 9 3 2 6 D + 0 1  - 0 . 1 6 5 2 8 9 2 6 D +  01 
0.300 - 0 . I 0 8 6 6 0 1 6 D +  01 - 0 . 1 3 8 8 8 8 8 9 D +  01 
0.325 - 0 . 8 6 5 8 9 5 6 2 D +  00 -0 .11834320D + 01 
0.350 - 0 . 6 8 6 1 9 0 1 4 D +  00 - 0 . 1 0 2 0 4 0 8 2 D +  01 
0.375 - 0 . 5 3 6 0 1 6 5 5 D +  00 - 0 . 8 8 8 8 8 8 8 9 D + 0 0  
0.400 - 0 . 4 0 7 1 5 8 3 8 D +  00 - 0 . 7 8 1 2 5 0 0 0 D + 0 0  
0.425 - 0 . 2 9 3 4 9 3 8 6 D +  00 - 0 . 6 9 2 0 4 1 5 2 D +  00 
0.450 -0 .19025943D + 0 0  -0 .61728395D + 0 0  
0.475 -0 .93556601D - 01 -0 .55401662D + 00 
0.500 0.00000000D + 00 -0 .50000000D + 00 

-2 .8796  

- 1.726 

- 1.0868 

-0 .4072  

a c  D is antisymmetric around h / H  = 0.5. 

Table 2. The shape factor 

Two walls, ~ Single wall, C h a n &  Leal (1974) 
h / H  C s C s = 3 / 8 ( H / h )  3 ( a / H  = 0.1, ~ '  = 0) 

0.125 0.19333713D - + - 0 3  0.19200000D + 0 3  
0.150 0.11233910D + 03 0.111111lID + 0 3  
0.175 0.71112829D + 02 0.69970845D + 02 
0.200 0.47955336D + 02 0.46875000D + 02 48.0 
0.225 0.33963834D + 0 2  0.32921811D + 0 2  
0.250 0.25026798D + 02 0.24000000D + 02 
0.275 0.19066733D + 0 2  0.18031555D + 0 2  
0.300 0.14957296D + 0 2  0.13888888D + 0 2  15.0 
0.325 0.12052477D + 02 0.10923987D + 02 
0.350 0.99646144D + 01 0.87463557D + 01 
0.375 0.84526356D +01  0.711111lID +01  
0.400 0.73626664D + 01 0.58593750D + 01 
0.425 0.65950786D + 01 0.48849990D + 01 
0.450 0.60856109D + 01 0.41152263D + 01 
0.475 0.57943842D + 01 0.34990523D + 01 
0.500 0.56996174D + 01 0.30000000D + 01 5.7 

~Cs is symmetric around h / H  = 0.5. 
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Figure 3. Comparison between single-wall and two-wall 
effects on the drag force coeflScient for various droplet 

positions. 
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Figure 4. Comparison between single-wall and two-wall 
effects on the shape factor for various droplet positions. 

A first-order wall effect was derived for the deformation of a droplet. It exhibits that the 
deformation shape derived by Taylor (1932, 1934) for a droplet suspended in an unbounded field 
is preserved, only the deformation magnitude has increased with a term of order (a/H) 3. 

It is clear from figures 3 and 4 and from tables 1 and 2 that the so much simpler result derived 
for the single-wall effect may provide a very good approximation for h/H values as high as 0.25 
with a 7% error for the drag coefficient and 2.5% error for the deformation coefficient. 

Equations [28] and [54a,b] for the drag force and [32] or [64] for the deformation also manifest 
the effect of the flow circulation inside the droplet. For a rigid sphere case (/~' =~ oo) the drag force 
exerted on the particle is the largest. It is at most four times greater than that for a bubble (F' ,~ 0), 
which is the least affected. Similarly, the wall effect on the droplet deformation is the largest for 
very viscous droplets. It is almost three times larger than the least affected bubble case. The rigid 
sphere case, however, (no deformation) cannot be recovered by taking ( / ~ ' ~ )  as explained by 
Taylor (1934) and Cox (1969). 

It is interesting to note that, in our case, first-order wall effects on the drag force coefficient and 
droplet deformation are of the order of (a/H) 2 and (a/H) 3, respectively, whereas for the case of 
a droplet moving between two parallel walls in a quiescent fluid they are one order lower and 
thereby more pronounced (Shapira & Haber 1988). 
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A P P E N D I X  A 

A general solution for Stokes equations in cartesian coordinates x, y, z, when x, y are unbounded, 
can be derived using a two-dimensional Fourier transform 

lff:  p(2j, 22, z) = ~ p(x, y, z)exp[i(2~ x + 22y)] dx dy, [A. 1] 

where p(x, y, z) is a fucntion in real space and p(2~, 22, z) is its Fourier transform. The inverse 
transform is 

p(x, y, z) = p(2~, 22, z)exp[--i(21x + 22y)] d2~ d22. [A.21 
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Applying Fourier's transform on Stokes equations, one obtains, after some simple manipulations, 
that 6~, the transformed z component of the velocity field, satisfies the following fourth-order 
ordinary linear differential equation: 

[ d: - , ] 2  22)]20)z = 0. [A.3] 
dz 2 v~l + 

A general solution of [A.3] can easily be derived: 

~5~ = (,~l + ,,12z)cosh 2z + (-43 + ,~4z)sinh 2z, [A.4] 

where 

2 = + 

and the coefficients X,. (i = 1 . . . . .  4) are general functions of  ).~ and 2~. If one deals with a 
semi-infinite domain z I> 0, e.g. the case analyzed in section 2, the velocity field must vanish at 
z ~ and [A~4] assumes the form 

o5= = (~ exp ( -2z )  + / ) z  e x p ( -  2z), [A.5] 

which depends only on two coefficients, (~ and / ) .  The other transformed velocity components oSx 
and eSy and the pressure fields g are 

~x = (,~ + i--~ z~ )exp(- 2z ), [A.6a] 

oSy = (B  + ~ z i ) ) e x p ( -  2z) [A.6b] 

and 

g = 2/) exp( -2z) ,  [A.6¢] 

where two additional yet undetermined coefficients X and ~ are introduced. Satisfaction of the 
continuity equation requires that 

B = 2~ + i(2,2 + 229). [A.7] 

Hence only three coefficients out of  four are independent and can be determined via the three 
boundary conditions imposed on the velocity field at z = 0. 

In our case (section 2), since cox =coy = 0 at z = 0 see [23b,c], it implies that 

A =/~ =0 ,  /)  = 2(~. [A.81 

From [23a] we have that 

2Ah2x 
co-'l= =0 = (h 2 + p2)Sa ' [A.9] 

w h e r e  p2  = x 2 + y 2 .  

However, from the Lipschitz integral we have that 

f: (o 2 + h2)~/2 -- J0(pA)exp(- 2 Ih l) d2. [A. 10] 

Differentiating [A.10] consecutively with respect to h and x, we get 

2Ah2x 0 fo (p, + h,),/, = -~A Ihl ~x Jo(p2)exp(-2lh[)2 d2. [A.I II 

However, Sneddon (1951) has shown that the two-dimensional Fourier transform is equal to the 
zero-order Hankel transform if a function P0-~, 22) can be expressed in terms of  2 only, namely: 

! f f f  P(2)exp[-i(2,x + 2,y)]d2, d2,= ff  [A.12] 
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Hence [A.I 1] can be rewritten as 

2Ah2x 1 Alhli f f f  2~exp(_2.hl)exp[_i(2,x + 22y)]dx dy (p 2 + h2) 5/2 = ~ 

o r  

chzl:=0 'f-~nAh e x p ( -  2h). [A.13] 

Introducing [A.13] into [A.5] we obtain 

Ah 
(~ = ~ i2~ e x p ( -  2h). [A.14] 

Consequently, from [A.2], [A.5], [A.8] and [A.14], the solution for toz is 

to: = ~ i 21 exp[ -2 (h  + z)](l + 2z)exp[--i(21x + 22y)] d2j d22 
ct3 

f f  
= -~Ah~x exp[ -2 (h  + z)](l + 2Z)Jo(2p) d2. [A.15] 

If we replace h by h + z in [A.10] and use its derivatives with respect to h + z, the last integral is 
simply 

2Ahx [hr~ + 5z(h + z)21, [A.161 to: = r---~-z 

where r 2 = [(h + z) 2 + p2]~/2. The velocity components COx and toy and the pressure s are found 
similarly and [24] and [25] are recovered. 

A P P E N D I X  B 

Equation [39a] is transformed using [A.I 1], namely 

[2Ax (h + 2mH)21 2A 0 fo°~ 
rn Jz=O -- 3 Ih + 2mill ~x Jo(2p)exp(-alh + 2mHI)2 d2. [B.1] 

Hence, from [A.12] and [39a], 

i).~A ~ ih + 2mnlexp( _2)h + 2mill) [B.2] 
th:]-'=°- 3n rn=-co 

_ i2, A t~ ~ exp(-- ~.]h + 2mHI). [B.3] 
3rr 02 . . . . .  

However, the sum in [B.3] can be decomposed into three terms 

exp( -2 lh  + 2mHl)=exp(-2h)+ ~ exp[ -2 (h  + 2 m , ) ]  + ~ exp[-2(2mH-h)], 
m =  - c c  m = l  m = l  

[B.41 
where the last two are simple geometric series. Consequently, after some simple arithmetic 
manipulations, 

i;hA 0 (cos h 2 ( H _ -  h ) )  lB.5] 
03: l: = 0 = 3n 82 \ sinh 2H " 

Similarly, the transformed boundary condition [39b] is 

i2, A 0 (cosh 2h 
e3. . I:=n- 3n 02 \sinh2HJ' [B.6] 

Utilizing [44], [49] and [39a,b], [46]-[48] are recovered. 
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A P P E N D I X  C 

The asymptotic behavior of CD for h ~ 0  needs some careful evaluation since the integration 
domain extends to infinity and products of hfl exist in the following integral: 

f: C o = f(fi, fl) dfl, [C. l] 

where f(/~, 8) is given by [54b]. To circumvent this difficulty we divide the integration domain into 
two parts 

f ;: 1 f(/~, x) dx, [C.21 co= 

where N -- O(//-q), for 0 < q < 1, spans an intermediate range. Consequently, for the first integral 
f(~, B) can be expanded in terms of ~ for ~ fixed. In the second integral we expand f(//, x) in terms 
o f / l  for x = ~ fixed. 

The first integrand results in the following expansion of [54b]: 

t/4(cosh//- I) 
/~ 3 s i ~ h ~ Z - ~ ) c a p  + 0(//2), [C.31 

which decays regularly likc /~ (thc integral is finite indcpendcnt of N to the cxtcnt of terms 
exponentially small). 

The leading term of the second integral is 

f 1 x3exp(-2x)  dx #s0 , - - - . 1  [C.41 
3fi 2 s 8fi 2 

Thus, the singular term stems from the second integral only, and 

1 
lim CD~ -- 
~0 8fi2" 

The deformation coefficient Cs given in [65] can be treated similarly. The second term in [65] 
contributes - 1 / 8 h  3 and the integral term contributes 

x 4 e x p ( -  2x) dx , . 
~" 2t~ 3 

Thus, we have 

3 
lira Cs -~ - -  
~-0 8//3" 


